Intrinsic compressibility and volume compression in solvated proteins by molecular dynamics simulation at high pressure.
نویسندگان
چکیده
Constant pressure and temperature molecular dynamics techniques have been employed to investigate the changes in structure and volumes of two globular proteins, superoxide dismutase and lysozyme, under pressure. Compression (the relative changes in the proteins' volumes), computed with the Voronoi technique, is closely related with the so-called protein intrinsic compressibility, estimated by sound velocity measurements. In particular, compression computed with Voronoi volumes predicts, in agreement with experimental estimates, a negative bound water contribution to the apparent protein compression. While the use of van der Waals and molecular volumes underestimates the intrinsic compressibilities of proteins, Voronoi volumes produce results closer to experimental estimates. Remarkably, for two globular proteins of very different secondary structures, we compute identical (within statistical error) protein intrinsic compressions, as predicted by recent experimental studies. Changes in the protein interatomic distances under compression are also investigated. It is found that, on average, short distances compress less than longer ones. This nonuniform contraction underlines the peculiar nature of the structural changes due to pressure in contrast with temperature effects, which instead produce spatially uniform changes in proteins. The structural effects observed in the simulations at high pressure can explain protein compressibility measurements carried out by fluorimetric and hole burning techniques. Finally, the calculation of the proteins static structure factor shows significant shifts in the peaks at short wavenumber as pressure changes. These effects might provide an alternative way to obtain information concerning compressibilities of selected protein regions.
منابع مشابه
Molecular dynamics simulation of solvated protein at high pressure.
We have completed a molecular dynamics simulation of protein (bovine pancreatic trypsin inhibitor, BPTI) in solution at high pressure (10 kbar). The structural and energetic effects of the application of high pressure to solvated protein are analyzed by comparing the results of the high-pressure simulation with a corresponding simulation at low pressure. The volume of the simulation cell contai...
متن کاملMolecular Dynamics Simulation of Potassium Chloride Melting (II. Constant Volume and Constant Pressure Simulation of Filled System)
We have used a simple ionic potential to simulate the melting of KCI pseudo-infinite crystal. Two MD simulations, one with constant Volume and the other with constant pressure condition are performed. These results are compared with the previous micro-sample simulation results. In the constant volume simulation the melting temperature increase substantially with increasing pressure. A method fo...
متن کاملMechanical properties of CNT reinforced nano-cellular polymeric nanocomposite foams
Mechanics of CNT-reinforced nano-cellular PMMA nanocomposites are investigated using coarse-grained molecular dynamics simulations. Firstly, static uniaxial stretching of bulk PMMA polymer is simulated and the results are compared with literature. Then, nano-cellular foams with different relative densities are constructed and subjected to static uniaxial stretching and obtained stress-strain cu...
متن کاملSimulations of the pressure and temperature unfolding of an -helical peptide
We study by molecular simulations the reversible folding unfolding equilibrium as a function of density and temperature of a solvated -helical peptide. We use an extension of the replica exchange molecular dynamics method that allows for density and temperature Monte Carlo exchange moves. We studied 360 thermodynamic states, covering a density range from 0.96 to 1.14 g cm 3 and a temperature ra...
متن کاملبررسی دینامیک ملکولی شیشه فلورید Zr/Ba/Na در فشار جو و 4 گیگاپاسکال
A constant volume, atmospheric pressure Zr/Ba/Na fluoride glass has been simulated by molecular dynamics with the limitations of the Born-Mayer-Huggins potentials, used previously and resulting in high simulation pressures, having been overcome. The simulated structure of this glass as well as its activation energy for diffusion are in very good agreement with those experimentally observed. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 93 21 شماره
صفحات -
تاریخ انتشار 1996